
SCHEDULER(8zm) SCHEDULER(8zm)

NAME
scheduler − zmailer transport queue scheduler daemon

SYNOPSIS
scheduler

[−divFHnQSVW] [−f configfile] [−E newentsmax[,newentstimemax]] [−L logfile]
[−l statisticslog] [−N transpmaxfno] [−P postoffice] [−p channel/host-pair] [−R max-
forkfreq] [−q rendezvous [−Z zenvfile]

DESCRIPTION
The scheduler daemon manages the delivery processing of messages in the ZMailer.

The router (8zm) creates message control files in the POSTOFFICE/transport directory. These
refer to the original message files in the POSTOFFICE/queue directory.

The scheduler reads each message control file from POSTOFFICE/transport/, translates the
contained message and destination information into internal data structures, and unlinks the mes-
sage control file.

Based on scheduling, priority, and execution information read from a configuration file, the sched-
uler arranges to execute Transport Agents relevant to the queued messages.

At the time scheduled for a particular transport agent invocation, the scheduler will start a trans-
port agent (or use one from idle-pool), and tell it one by one which message control files to pro-
cess. When all the destination addresses in a message have been processed, the scheduler per-
forms error reporting tasks if any, and then deletes the message control file in POSTOF-
FICE/transport and the original message file in POSTOFFICE/queue.

All message delivery is actually performed by Transport Agents, which are declared in a configura-
tion file for the scheduler. Each transport agent is executed with the same current directory as
the scheduler. The scheduler-transporter interaction protocol is described later in this man-page.

The standard output of each transport agent are destination address delivery reports; either suc-
cessful delivery, unsuccessful delivery, or deferral of the address. Each report uses byte offsets in
the message control file to refer to the address. Reports may also include a comment line which
will be displayed in the scheduler’s own reports.

Two types of reports are produced:

1. Error messages caused by unsuccessful delivery of a message are appended to its message con-
trol file. Occasionally, for example, when all addresses have been processed, the scheduler gen-
erates an error message to the error return address of the message (usually the original
sender).

2. The scheduler binds itself to a well-known TCP/IP port (MAILQ, TCP port 174) on startup.
Any connections to this port are processed synchronously in the scheduler at points in the exe-
cution where the state is internally consistent. The scheduler simply dumps its internal state
in a terse format to the TCP stream. It is expected that the client program will reconstruct
the data structures sufficiently to give a user a good idea of what the scheduler thinks the
world looks like. The mailq(1zm) program serves this purpose.

OPTIONS
Invoking scheduler without any argument will start it as a daemon.

−d run as a daemon, usually used after −v to log daemon activity in great detail.

−E newentsmax[,neweventtimelimit]
when globbing new tasks from the directory, pick only first ‘‘newentsmax’’ of them, and
leave rest for a new scan run, or do it at most for ‘‘newenttimelimit’’ seconds. Default

2006-Jun-26 1

SCHEDULER(8zm) SCHEDULER(8zm)

values are 40 000 messages, and 5 seconds.

This relates on how the system will scan the input queue areas for new messaes. Nomi-
nally in lightly loaded systems the scan for new messages will be done every 10 seconds,
but if the queue in pre-scan area is sufficiently large, that interval is raised up to 20 sec-
onds.

The ‘‘newenttimelimit’’ value can be set to 2 thru 15, and tells essentially for how long the
scheduler is allowed to spend on the work to look for new things.

−f configfile
overrides the default configuration file MAILSHARE/scheduler.cf .

−F Freeze -- don’t actually run anything, just do queue scanning. (For debug purposes..)

−H −HH
Use multi-level hashing at the spool directories. This will efficiently reduce the lengths of
the scans at the directories to find some arbitary file in them. One ‘H’ means "single level
hashing", two ‘HH’s mean "dual level hashing". ‘‘Hash’’ is directory which name is single
upper case alphabet (A-Z).

When existing, ZENV variable SCHEDULERDIRHASH overrides the ‘H’ option.

−i run interactively, i.e., not as a daemon.

−L logfile
overrides the default log file location LOGDIR/scheduler.

−l statisticslog
starts the appending of delivery statistics information (ASCII form) into given file. No
default value.

−M [1|2]
Version of the mailq protocol this server runs; essentially a test option, as existence of
PARAMauthfile=".." assignment at the scheduler.conf file turns the protocol into ver-
sion 2.

−N transmaxfno
sets how many filehandles are allocated for the scheduler’s started children (if the system
has adjustable resources.)

−n
Toggles configuration flag ‘default full content’, which defines what will be DSN RET
parameter assumed value in case the originator didn’t supply that parameter.

Default behaviour is similar to RET=FULL, while usage of this option is equivalent of
RET=HDRS. This option does not override originator supplied DSN RET parameter
value.

−p channel/host
A debug-type option for running selectively some thread under a single instance of the
scheduler .

Use this with options: −v

−P postoffice
specifies an alternate POSTOFFICE directory.

2006-Jun-26 2

SCHEDULER(8zm) SCHEDULER(8zm)

−q rendezvous
on machines without TCP/IP networking, the rendezvous between scheduler and
mailq (1zm) is done using a well-known named pipe. This option overrides the default
location for this special file, either RENDEZVOUS or /usr/tmp/.mailq.text .

−Q The ‘‘Q’’-mode, don’t output the old style data into the queue querier, only the new-style
one.

−S Synchronous startup mode, scans all jobs at the directory before starting even the first
transporter.

−v be verbose about activity, and do not detach as a daemon.

−W be used in conjunction with −v to delay verbose logging start until after all the files have
been parsed in, and it is a time for doing scheduling.

−Z zenvfile
passes on explicite non-compiled-in-default located ZCONFIG environment file.

−V print version message and run interactively.

CONFIGURATION FILE
The scheduler configuration file consists of a set of clauses. Each clause is selected by the pattern
it starts with. The patterns for the clauses are matched, in sequence, with the channel /host
string for each recipient address. When a clause pattern matches an address, the parameters set
in the clause will be applied to the scheduler ’s processing of that address. If the clause specifies a
command, the clause pattern matching sequence is terminated. This is a clause:

local/*
interval=10s
expiry=3h
want 20 channel slots in case of blockage on one
maxchannel=20
want 20 thread-ring slots
maxring=20
command="mailbox -8"

A clause consists of:

• A selection pattern (in shell style) that is matched against the channel/host string for an
address.

• 0 or more variable assignments or keywords (described below).

There are several possible PARAM-assignments starting at column 0, more of them below.

If the selection pattern does not contain a ’/’, it is assumed to be a channel pattern and the host
pattern is assumed to be the wildcard ’*’.

The components of a clause are separated by whitespace. The pattern introducing a clause must
start in the first column of a line, and the variable assignments or keywords inside a clause must
not start in the first column of a line. This means a clause may be written both compactly all on
one line, or spread out with an assignment or keyword per line.

If the clause is empty (i.e., consists only of a pattern), then the contents of the next non-empty
clause will be used.

The typical configuration file will contain the following clauses:

• a clause matching all addresses (using the pattern */*) that sets up default values.

2006-Jun-26 3

SCHEDULER(8zm) SCHEDULER(8zm)

• a clause matching the local delivery channel (usually local).

• a clause matching the deferred delivery channel (usually hold).

• a clause matching the error reporting channel (usually error).

• clauses specific to the other channels known by the router , for example, smtp and uucp.

The actual names of these channels are completely controlled by the router configuration file.

Empty lines, and lines whose first non-whitespace character is ’#’, are ignored.

Variable values may be unquoted words or values or doublequoted strings. Intervals (delta time)
are specified using a concatenation of: numbers suffixed with ’s’, ’m’, ’h’, or ’d’ modifiers designat-
ing the number as a second, minute, hour, or day value. For example: 1h5m20s.

The known variables and keywords, and their typical values and semantics are:

interval (1m)
specifies the primary retry interval, which determines how frequently a transport agent
should be scheduled for an address. The value is a delta time specification. This value,
and the retries value mentioned below, are combined to determine the interval between
each retry attempt.

idlemax (3x interval)
When a transport agent runs out of jobs, they are moved to ‘‘idle pool’’, and it a TA
spends more than idlemax time in there, it is terminated.

expiry (3d)
specifies the maximum age of an address in the scheduler queue before a repeatedly
deferred address is bounced with an expiration error. The actual report is produced when
all addresses have been processed.

The expiry happens only, if there has been at least one delivery attempt in the lifetime of
the scheduler process currently running.

expiry2 (0)
specifies additional time beyond primary expiration by which time the message will be
expired even without any delivery attempts having been made.

retries (1 1 2 3 5 8 13 21 34)
specifies the retry interval policy of the scheduler for an address. The value must be a
sequence of positive integers, these being multiples of the primary interval before a retry
is scheduled. The scheduler starts by going through the sequence as an address is repeat-
edly deferred. When the end of the sequence is reached, the scheduler will jump into the
sequence at a random spot and continue towards the end. This allows various retry
strategies to be specified easily:

brute force (or "jackhammer"):
retries=0

constant primary interval:
retries=1

instant backoff:
retries="1 50 50 50 50 50 50 50 50 50 50 50 50 "

slow increasing (fibonacci) sequence:
retries="1 1 2 3 5 8 13 21 34"

s-curve sequence:
retries="1 1 2 3 5 10 20 25 28 29 30 "

exponential sequence:
retries="1 2 4 8 16 32 64 128 256 "

etc.

2006-Jun-26 4

SCHEDULER(8zm) SCHEDULER(8zm)

maxta (0)
This is global parameter limiting the number of transport-agent processes that the sced-
uler can have running concurrently.

If retrying an address would cause the number of simultaneously active transport agents
to exceed the specified value, the retry is postponed.

When no maxta parameter is used, or ’0’ is used, the scheduler (at operating systems sup-
porting it) uses getrlimit(2)/setrlimit(2) to maximize the number of available file descrip-
tors for the process. The thus maximized value minus about 20 is then used as maxta
value.

At some operating systems there are no bidirectional pipes or sockets for the scheduler to
talk with the transport agents, thus at those systems each TA process uses two pipe (2)
file-handles, and thus system-wide limit on maxta halves from what was maximum derived
above.

maxchannel (0)
This limits the number of concurrent transport agent processes for which the channel part
of the address quad are same.

The default value is copied from the maxta .

It is advisable, although not mandatory, to have the same value for all maxchannel
parameters at all clauses with matching channel parts.

Case where non-alike values might make sense is when you want to guarantee resources
for a subset of destinations, e.g. for all other "smtp/" clauses have maxchannel of say 100,
but for your very important domain domain have there a bit higher, say: 120.

maxring (0)
The recipients are groupped into ‘‘threads’’ by recipient channel+host parts, and threads
matching same selector clause are groupped into ‘‘thread-rings’’, where same transport
agent can be switched over from one recipient to another.

This parameter defines how many transport agents can be running at any time at the
ring.

When no limit is given, then maxta value is used for default.

maxthr (1)
This limits the number of parallel transport agents within each thread; that is, using
higher value than default ‘‘1’’ will allow running more than one TA for the jobs at the
thread.

Do note that running more than one TA in parallel may also require lowering OVER-
FEED value. (E.g. having a queue of 30 messages will not benefit from more TAs, unless
they all get something to process. Having OVERFEED per default at 150 will essentially
feed whole queue to one TA, others are not getting any.)

overfeed (150)
Because the scheduler spins around a bit sluggishly to spot active TAs, it does make sense
to feed more than one task to a TA, and then wait for the results, thus came about the
‘‘overfeed’’ mechanism.

This tells how many job specifiers to feed to the TA when the TA process state is
‘‘STUFFING.’’

skew (5)
Leftover from earlier scheduler internal structure. Does not make sense anymore.

2006-Jun-26 5

SCHEDULER(8zm) SCHEDULER(8zm)

user (root)
is the user id of a transport agent processing the address. The value is either numeric (a
uid) or an account name.

group (daemon)
is the group id of a transport agent processing the address. The value is either numeric
(a gid) or a group name.

command (smtp -srl ${LOGDIR}/smtp $host)
is the command line used to start a transport agent to process the address.

The program pathname is specified relative to the MAILBIN/ta directory.

The string "$channel" is replaced by the current matched channel, and "$host" is
replaced by the current matched host, from the destination address, and "${LOGDIR}"
substitutes ZENV variable LOGDIR value there.

It is strongly recommended that the "£host" is not to be used on a command definition, as
it limits the usability of idled transporter.

It is possible to place environment-string setting statements into the beginning of the line:

command="MALLOC DEBUG =1 OTHER=var cmdname cmdparams "

queueonly
a clause with queueonly flag does not auto-start at the arrival of a message, instead it
must be started by means of smtpserver (8zm) command ETRN thru an SMTP connec-
tion.

To have message expiration working, following additional entries are suggested: inter-
val=1h retries="24"

For example, this is a complete configuration file:

Default values
/

interval=1m expiry=3d retries= "1 1 2 3 5 8 13 21 34"
maxring=0 maxta=0 skew=5 user=root group=daemon

Boilerplate parameters for local delivery and service channels
local/*

interval=10s expiry=3h maxchannel=2 command=mailbox
error

interval=5m maxchannel=10 command=errormail
hold/*

interval=5m maxchannel=1 command=hold
Miscellaneous channels supported by router configuration
smtp/*.toronto.edu
smtp/*.utoronto.ca

maxchannel=10 maxring=2
command="smtp -srl $LOGDIR/smtp "

smtp
maxchannel=10 maxring=5
command="smtp -esrl $LOGDIR/smtp"

uucp/*
maxchannel=5 command="sm -c $channel uucp"

The first clause (*/*) sets up default values for all addresses. There is no command specification,
so clause matching will continue after address have picked up the parameters set here.

The third clause (error) has an implicit host wildcard of ’*’, so it would match the same as speci-
fying error/* would have.

2006-Jun-26 6

SCHEDULER(8zm) SCHEDULER(8zm)

The fifth clause (smtp/*.toronto.edu) has no further components so it selects the components of
the following non-empty clause (the sixth).

Both the fifth and sixth clauses are specific to address destinations within the TORONTO.EDU
and UTORONTO.CA organization (the two are parallel domains). At most 10 deliveries to the
smtp channel may be concurrently active, and at most 2 for all possible hosts within
TORONTO.EDU. If $host is mentioned in the command specification, the transport agent will
only be told about the message control files that indicate SMTP delivery to a particular host.
The actual host is picked at random from the current choices, to avoid systematic errors leading
to a deadlock of any queue.

CONFIGURATION FILE PARAM-ASSIGNMENTS
The scheduler can assign several of its internal parameters by having variable assignments begin-
ning at column 0, and beginning with "PARAM" text. NOTE: There is no space in following
assignment names!

PARAMmailqpath = "UNIX:/path/to/pf unix/mailq/socket"

PARAMmailqpath = "TCP:mailq"

PARAMmailqpath = "TCP:174"
These define two different types of possible socket addresses for the mailq protocol; a UNIX
socket, and a TCP socket. Default is "TCP:174".

PARAMauthfile = "/path/to/scheduler.auth"
Location of MAILQv2 autentication control file

PARAMglobal−report−interval = 15m
Interval by which all permanent reports accumulated into a message are reported by;
sends out early reports of delivery failures, and does not force to wait for maximum queue
timeout in case the message has more than once recipient.

PARAMmsgwriteasync = 1
If you desire to speed up the system a bit, and run slightly dangerously, enable (any non-
zero numeric value will do) this parameter entry.

PARAMstore-error-on-error = 1
Enabling this parameter (any non-zero numeric value will do) will store the error mes-
sages into $POSTOFFICE/postman/ directory with suffix: ":error-on-error".

MESSAGE CONTROL FILE SYNTAX
A message control file contains all the information needed by delivery programs like scheduler and
the transport agents. It is a terse presentation of the router ’s decisions, along with some useful
reference information.

The message control file consists of a number of fields.

All fields start in the first column (i.e., at the beginning of the file or just after a newline), and
most fields extend to the end of line. The one exception is the message header field which extends
till a double-newline terminator.

For all but this message header field, the second column is reserved for a tag byte. This position
is used to lock the field and to indicate the status of past processing of the field. For example, the
success or failure of delivery to a recipient address is indicated by a ’+’ or means the field has not
been processed, or that processing has been deferred. A ’˜’ indicates the field is locked because
some transport agent is currently processing delivery for the address. The known field names and
tags are defined in <mail.h>.

For all the recipient addresses, there is 6 characters space for transport-agent process-id so that a
quickly restarted scheduler will not do double-delivery on some slowly running transporter.

2006-Jun-26 7

SCHEDULER(8zm) SCHEDULER(8zm)

The following fields are mandatory:

@ 0xHHHHHH
Carries hex-encoded bitflags of what kind of format this dataset really is in.

This is to ensure that ‘‘featurefullness’’ relation of: router <= scheduler <= TA-programs
is not violated, and that the messages in the spool meet this criteria too.

Rolling binaries back too far might break things.

i 123456−789
the name of the message file in the POSTOFFICE/queue directory and of the message
control file in the POSTOFFICE/transport directory. the system and therefore are
named by their inode number.

o NNNNNNN
the byte offset of the message body in the original message.

The following fields will frequently exist:

e user@some.domain
is the return address for error messages, in a form that can be put in a To: header line.

l <mumble@jumble>
is a string identifying this message in log entries. Typically the message id of the message
would be used.

The following fields will occasionally appear:

x <jumble@mumble>
is the log identification string (usually a message id) of an obsoleted message. The sched-
uler will purge any such identified message after running sanity checks.

v ../public/v filename
is the name of a file that the delivery system can appended log information to. This
would appear as the result of running sendmail -v or Mail -v.

Since all programs need to refer to the same file, on mail clusters it is recommended that this be a
relative path naming a file within the POSTOFFICE directory hierarchy.

A message control file must contain at least one address "group". Each group consists of a sender
address field, one or more recipient address fields, and a message header that goes along with
these.

An address field is a string containing a space-separated 4-tuple (quad) as follows:

channel
is the name of the delivery channel for this address. This must be a contiguous word.

host is the name of the next destination host for this address. This too must be a contiguous
word.

user is the address to be handed to the destination host for further delivery. This string may
contain space. It is distinguishable because the last component cannot contain spaces.

privilege
is the numeric uid representing the privileges associated with this address.

The address group components are:

2006-Jun-26 8

SCHEDULER(8zm) SCHEDULER(8zm)

s <address quad>
carries a sender address field in address-quad form.

r PPPPPPDDDD<address quad>
is a recipient address field in address quad form, but also contains fields for transprort
agent pid number (PPPPPP), and a four character space for delay reporting by the
scheduler (DDDD).

N string
are the delivery-status-notification parameters for the previous recipient.

n string
is the delivery-status-notification environment id data for the previous recipient.

R string
The DSN RET-mode setting (HDRS/FULL) for the previous recipient.

X nnnnnn
is an XOR recipient address field. The first element is a tag (a class number) to identify
collections of recipient addresses which are equivalent (and therefore mutually exclusive).
This is followed by an address field as described above.

m carries the message header for this address group.

After one or more of these address groups, the error messages for addresses are appended to the
message control file. This is done by the scheduler as it receives error reports from transport
agents.

d <diag-string>
Is storage format for diagnostics for recipient addresses.

Structure of the diagnostic string is:
d id:headeroffset:drptoffset::diagtime \t notarydata \t message
d 172:347:226::964917927 ...

The id field tells the byte offset to tge ‘‘r’’ of the receiver definition line.

The headeroffset gives the byte offset of the first byte of the headers associated with the
address group.

The drptoffset points to the possible ‘‘N’’ line.

The diagtime is just system time of the event.

The notarydata and message are explained further below, and are identical to the trans-
port-agent to the scheduler communication protocol objects of the same name.

For example, this is a typical message control file (it is a snapshot taken while a transport agent
was running):

i 15582
o 60
l <90Jun3.165355edt.15582@neat.cs.toronto.edu>
e Rayan Zachariassen <rayan>
s local - rayan 7
r~23456 local - rayan 7
m
Received: by neat.cs.toronto.edu id <15582>;

Sun, 3 Jun 1990 16:53:55 -0400
From: Rayan Zachariassen <rayan>
To: rayan

2006-Jun-26 9

SCHEDULER(8zm) SCHEDULER(8zm)

Subject: a typical message control file
Message-Id: <90Jun3.165355edt.15582@neat.cs.toronto.edu>
Date: Sun, 3 Jun 1990 16:53:54 -0400

TRANSPORT AGENT INTERFACE
The transport agent interface follows master-slave -model, where the TA informs the scheduler
that it is ready for the work, and then the scheduler sends it one job description, and awaits for
diagnostics. Once the job is finished, the TA notifies the scheduler that it is ready for a new job.

A short sample session looks like this:

S: (start the transport agent)
T: #hungry
S: spoolid \t hostspec
T: diagnostics
T: #hungry
(etc. active work)
T: #hungry
S: #idle
T: #hungry
(the scheduler moved the TA into IDLE pool)
S: spoolid \t hostspec
(the TA was reactivated from the IDLE pool, doing work)
T: #hungry
S: EOF
(the scheduler determined that the TA should be killed)
T: (exits)

("S" = Scheduler, "T" = Transport agent)

Normal diagnostic output is of the form:

id / offset \t notarydata \t status SPC message

Where:

id is the inode number of the message file,

offset is a byte offset within its control file where the address being reported on is kept,

notarydata
is a Ctrl-A separated quintet/sextet carrying delivery-status-notification informa-
tion for the recipient. Status is one of ok, ok2, ok3, error, error2, deferred ,
deferall, or retryat, and the

status The exit status is a code from <sysexits.h>.

message
is descriptive text associated with the report. The text is terminated by a line-
feed. Any other format (as might be produced by subprocesses) is passed to stan-
dard output for logging in the scheduler log. The retryat response will assume
the first word of the text is a numeric parameter, either an incremental time in
seconds if prefixed by +, or otherwise an absolute time in seconds since epoch.

The notarydata has Control-A separated sub-fields, five or six of them:

Final-Rcpt-Address DSN-Action ENH-Status Report-String WTT-Host [WTT-TAid]

2006-Jun-26 10

SCHEDULER(8zm) SCHEDULER(8zm)

Final-Rcpt-Address
This is the final form of the recipient address used at the final delivery of which the diag-
nostic data is report about. Compare with ORCPT= data!

DSN-Action
One of: "delivered", "failed", relayed", "delayed", "expanded". See RFC 1892.

ENH-Status
Enhanced status code per RFC 2034.

Report-String
A free-form text (one line, no e.g. CRs enbedded).

WTT-Host
For SMTP systems to produce "Remote-MTA:" header contents.

WTT-TAid
ZMailer specific extension to report the process name and PID number of the transport
agent producing this report. Helps to hunt for the syslogged data relating to this diagnos-
tics instance.

STATISTICS LOG FORMAT
The statistics log reports condenced performance oriented information in following format:

Old format:

timestamp fileid dt1 dt2 state $channel/$host
812876190 90401-2 0 5 ok usenet/-
812876228 90401-1 0 7 ok usenet/-
812876244 90401-1 0 1 ok local/gopher-admin
812876244 90401-1 0 5 ok smtp/funet.fi
812876559 90401-1 0 21 ok smtp/utu.fi

New format:

spoolid dt1 dt2 state $channel/$host
S258367AbTCLWiT 0 5 ok usenet/-
S258367AbTCLWiT 0 7 ok usenet/-
S258387AbTCLWiT 0 1 ok local/gopher-admin
S258397AbTCLWiT 0 5 ok smtp/funet.fi
S258467AbTCLWiT 0 21 ok smtp/utu.fi

where the fields are:

spoolid
Spoolid (encoded inode and spool file mtime), which can be used to correlate with sys-
logged data with these same ids. The spoolid uses nanosecond resolution version of
mtime, if such is supported in the system, and will in all cases encode nanoseconds as last
five characters of the spoolid. Systems which do not internally support nanosecond timers
in files will often result with same spoolid value for two messages.

timestamp
The original spoolfile ctime (modification time) stamp in decimal.

fileid Spoolfile name after the router has processed it

dt1 The time difference from spoolfile ctime to scheduler control file creation by the router

2006-Jun-26 11

SCHEDULER(8zm) SCHEDULER(8zm)

dt2 The time difference from scheduler file ctime to the delivery that is logged on

state What happened? Values: ok, error, expiry

$channel/$host
Where/how it was processed

MAILQ(v1) PROTOCOL
Upon accepting a TCP connection on the MAILQ port (TCP port 174), the scheduler dumps
data to the TCP stream in the following format and immediately closes the connection:

The TCP stream syntax is:

version id\n
data in id-dependent format<close>

The first line (all bytes up to an ASCII LF character, octal 12) is used to identify the syntax of all
bytes following the line terminator LF. The first 8 characters of the first line are "version " as a
check that this is indeed a MAILQ port server that has been reached, the remaining bytes are
the real data format identification. The data is interpreted according to that format until the ter-
minating connection close.

Format identifiers should be registered with the author. Currently identified ones are:
"zmailer 1.0", and "zmailer 2.0".

For the "zmailer 1.0" data format, the syntax of the data following the first LF is:

Vertices:\n
(<key>:\t><msg-file>\t><n-addrs>; <off1>(,<offN>)*\t>[#<text>]\n)*
(Channels:\n
(<word>:\t>(><key>)+\n)+
Hosts:\n
(<word>:\t>(><key>)+\n)+)?
End:\n
<mailq -Q thread and status report>

Where:

\n is an ASCII linefeed

\t is an ASCII tab

key is an unsigned decimal number

msg-file
is a contiguous string (it is the message file name relative to a known directory)

n-addrs
is an unsigned decimal number (number of addresses)

off1...offN
are unsigned decimal numbers (address byte offsets)

text
is a string not containing an ASCII linefeed (status message)

word
is a contiguous non-space string

For example, here is sample output from connecting to the MAILQ port:

version zmailer 1.0

Vertices:

311424: 3714 1; 116

2006-Jun-26 12

SCHEDULER(8zm) SCHEDULER(8zm)

311680: 6472 2; 151,331 #128.100.8.4: Null read! (will retry)

312192: 6347 1; 152 #128.89.0.93: connect: Connection timed out (will retry)

Channels:

smtp: >311424>311680>312192

Hosts:

scg.toronto.edu: >311424

mv04.ecf.toronto.edu: >311680

relay1.cs.net: >312192

This is sufficient information to be able to reconstruct the transport queues as seen by the sched-
uler process, and to find more information than what is shown here by actually looking up the
message control and data files referred to.

MAILQv2 PROTOCOL
The MAILQv2 protocol is interactive autenticating protocol, unlike its predecessor (v1). The sys-
tem begins with a greeting telling version, and then giving one line of challenge to be used in sub-
sequent autentication command:

version zmailer 2.0\n
MAILQ-V2-CHALLENGE: 942665308.906504.3\n

Protocol commands are:

AUTH username hexauthenticator
The "login" of the mailq session. The hexauthenticator is lowercase hexadecimal charac-
ter printout of MD5 checksum ran over the catenate of the challenge string (without its
ending newline character), and the user’s password. This algorithm is essentially the
same what APOP scheme uses.

PERLish example with above challenge:
$authen = MD5hex("MAILQ-V2-CHALLENGE: 942665308.906504.3"."my-passwd")

SHOW SNMP
Implements ‘mailq −QQQ’.

SHOW QUEUE SHORT
Implements ‘mailq −QQ’.

SHOW QUEUE THREADS
Implements ‘mailq −Q’.

SHOW THREAD channel host
Reports details usable to implement mailq-v1 like interface. The details are TAB sepa-
rated fields in a line until an LF. Fields are:

1) filepath under $POSTOFFICE/transport/

2) line number within a group, 0 starts a group

3) error address in brackets

4) recipient line offset within the control file

5) message expiry time (time t)

6) next wakeup time (time t)

7) last feed time (time t)

8) count of attempts at the delivery

9) "retry in NNN" or a pending on "channel"/"thread"

10) possible diagnostic message from previous delivery attempt

2006-Jun-26 13

SCHEDULER(8zm) SCHEDULER(8zm)

ETRN etrn string
Supports ETRN-cluster subsystem at smtpserver.

KILL MSG spoolid
Unimplemented.

KILL THREAD channel host
Unimplemented.

Responses are written out to same socket in POP-like manner:

AUTH \n
+OK or -LOGIN FAILED \n
SHOW SNMP\n
+OK until LF.LF\n
text\n
text\n

If the output text contains a dot at the beginning of the line, it is duplicated in SMTP (and POP)
style.

Of various commands, the "SHOW" class implements multiple text-line outputs, others only
"+OK" (or "-ERR...").

MAILQv2 AUTHENTICATION FILE
For autenticating MAILQv2 protocol users, system can use PARAMauthfile="/path/to/file.auth"
PARAM-assignment to identify file containing the data, and with the file to authenticate and
parametrize what user can do thru the MAILQv2 port.

#
APOP-like authentication control file for the ZMailer scheduler.
#
Fields are double-colon (’:’) separated, and are:
- Username
- PLAINTEXT PASSWORD (which must not have double-colon in it!)
- Enabled attributes (tokens, space separated)
- IP ACLs
#
Same userid CAN appear multiple times, parsing will pick the first
instance of it which has matching IP address set
#
The default-account for ’mailq’ is ’nobody’ with password ’nobody’.
Third field is at the moment a WORK IN PROGRESS!
#
SECURITY NOTE:
OWNER: root
PROTECTION: 0600
#
Attribute tokens:
ALL well, a wild-card enabling everything
SNMP "SHOW SNMP"
QQ "SHOW QUEUE SHORT"
TT "SHOW QUEUE THREADS", "SHOW THREAD channel host"
ETRN "ETRN etrn_string"
KILL "KILL THREAD channel host", "KILL MSG spoolid"

2006-Jun-26 14

SCHEDULER(8zm) SCHEDULER(8zm)

#
SMTPIP Smtp-server’s "Z-REPORT" ACL.
#
-- "nobody" via loopback gets different treatment from
"nobody" from anywhere else.
#
nobody:nobody:SNMP QQ TT ETRN: [127.0.0.0]/8 [ipv6.0::1]/128
nobody:nobody:SNMP ETRN: [0.0.0.0]/0 [ipv6.0::0]/0
#watcher:zzzzz:SNMP QQ TT ETRN: [127.0.0.0]/8 [192.168.0.1]/32
#root:zzzzzzz:ALL: [127.0.0.0]/8 [192.168.0.2]/32

Z−ENVIRONMENT VARIABLES
LOGDIR

defines location of log files. Example: LOGDIR=/var/log/mail

MAILBIN
Defines where executable transport-agent binaries exist under $ MAILBIN/ta/ directory.

MAILSHARE
Location of scheduler configuration files

PATH What PATH environment variable to give to transport-agent subprograms.

POSTOFFICE
defines directory where all POSTOFFICE functions are under.
Example: POSTOFFICE=/var/spool/postoffice

SCHEDULERNOTIFY
defines an AF UNIX/DGRAM type local notification socket into which the router (8zm)
sends a message for the scheduler (8zm) that there is a new job available.

SCHEDULERDIRHASH
Carries a numeric value of ‘‘1’’ or ‘‘2’’ (if defined at all), which will then override possible
‘‘-H’’ option at the scheduler (8zm). Existence of this ZENV-variable tells the router (8zm)
to send messages directly to the scheduler’s hash subdirectories, thus eliminating a few
directory operations which the scheduler would otherwise do, and at the same time limit-
ing the size of the directory files.

On high-load systems, value of: SCHEDULERDIRHASH=2 is highly recommended!

SYSLOGFLG
Existence of ‘‘c’’ or ‘‘C’’ character in value string enables syslogging of some events as seen
by the scheduler.

ZCONFIG
Gives location of zmailer.conf file (and filename). Actually this one variable does not
override compiled-in location of this configuration file.

TCP−WRAPPER AND MAILQ
Do note that this applies only when the mailq is using old version 1 mode!

If the ZMailer system is configured with tcp-wrapper code, then service-id "mailq" is looked for
all those addresses that are allowed to do queries.

Usually files hosts.allow , and hosts.deny contain following kind of entries:

/ETC/hosts.allow

2006-Jun-26 15

SCHEDULER(8zm) SCHEDULER(8zm)

mailq : ALL@1.2.3.0
smtp-receive: ALL@ALL

/ETC/hosts.deny
ALL : ALL@ALL

(Do note that smtpserver (8zm) has also tcp-wrapper support, which becomes active simultaneously
with scheduler’s tcp-wrapper code!)

SIGNALS
SIGHUP:

close and reopen the stdout/stderr log file.

SIGTERM :
exit cleanly.

SIGQUIT:
exit cleanly, but at first order transporter childs to shut down, and collect their status
reports.

SIGALRM :
check pending work.

SIGUSR1:
reread the scheduler configuration file.

SIGUSR2:
dump state information to the rendezvous file.

FILES
/opt/mail/zmailer.conf (ZCONFIG)
/var/spool/postoffice/.pid.scheduler (POSTOFFICE/.pid.scheduler)
/var/spool/postoffice/.scheduler.notify (POSTOFFICE/.scheduler.notify)
/var/spool/postoffice/scheduler (POSTOFFICE/scheduler)
/var/spool/postoffice/transport (POSTOFFICE/transport)
/var/spool/postoffice/queue (POSTOFFICE/queue)

SEE ALSO
mailq (1zm), mailq-m (5zm), router (8zm), smtpserver (8zm), mailbox (8zm), hold (8zm), smtp(8zm),
errormail (8zm), sm(8zm), expirer (8zm), reroute (8zm), manual-expirer (8zm), manual-
rerouter (8zm), zmailer.conf (5zm).

RFC 822/2822 The basic Internet email format specification
RFC 1123 Various 822 parameter clarifications

Several extended SMTP facilities are implemented:

RFC 1341/1521/2045 MIME specification (body, formats)
RFC 1342/1522/2047 "MIME-2" specification (headers)
RFC 1425/1651/1869 ESMTP EHLO framework
RFC 1428 Basic MIME conversion rules
RFC 1891/3461 ESMTP DSN
RFC 1892/3462 The Multipart/Report Content Type
RFC 1893/3463 Enhanced Mail System Status Codes
RFC 1894/3464 Extensible Message format for DSNs
RFC 1985 ESMTP ETRN
RFC 2034 ESMTP ENHANCEDSTATUSCODES

2006-Jun-26 16

SCHEDULER(8zm) SCHEDULER(8zm)

RFC 2852 ESMTP DELIVERBY (incomplete inplementation)

AUTHOR
This program authored and copyright by:

Rayan Zachariassen <no address>
A plenty of changes and several real bugfixes by:

Matti Aarnio <mea@nic.funet.fi>

2006-Jun-26 17

